## Journal of Research in Biomedical Sciences (JRBMS)

A Peer reviewed Indexed International Journal (IF 0.92) An Official Publication of BioSci Group of Research I An UGC Approved Journal



# Anti-Urolithiatic activity of medicinal plants and Siddha formulatory medicine: - A Review

Arul Priya  $S^{*l}$ , Sudha  $V^2$ 

 $st^{1}$  & Siddha Physician, Agathiyar Siddha Clinic, Chennai, Tamilnadu, India.. Correspondence and offprint requests to: Arul Priya S © 2020 BioSci Group, Reverse Publishing Ltd, India.

#### **ABSTRACT**

Urolithiasis or urinary calculus is the formation of stones anywhere in the urinary tract. Standard pharmaceutical drugs used to prevent or treat urolithiasis are not effective in all cases, costly, quite common recurrences, risk of potential side effects and no guarantee. Despite the improvements in invasive medical techniques (Like Extracorporeal Shock Wave Lithotripsy (ESWL), Percutaneous nephrolithotomy (PCNL) etc.) the worldwide incidence of urolithiasis is quite high. Numerous medicinal plants have been chosen as an effective treatment of urolithiasis as they inhibit kidney stone. The use of medicinal plants assume important in Siddha system of medicine. In aspect of urolithiasis treatment, the medicinal plants have the potency to interrupt in the stone formation as well as efficacy to break the formed stone. So, in this present review evaluates data from in vitro and in vivo studies of medicinal plants and clinical trials of Siddha formulatory medicines revealed that the potential usefulness of herbal medicines in the management of urolithiasis.

#### **KEYWORDS**

Urolithiasis, Anti-urolithiatic activity, medicinal plants, Siddha medicines

Received: January 2020. Revised: February 2020. Accepted: February 2020 © The Author(s) 2020. Published by BioSci Group Publishing Ltd, India.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

For commercial re-use, please contact journals. editorjrbms@biosci.in

To Cite: Arul Priya et al, Anti-urolithiatic activity of medicinal plants and Siddha formulatory medicines: A review, J Res Biomed Sci, 3(1), 2020, 07-12.

## INTRODUCTION

Urolithiasis is the complex process that results from several physicochemical events including crystal nucleation, aggregation and retention in the urinary tract1. Primary and recurrent stone formations are the biggest challenges faced today and remain a major source of morbidity in humans. The peak age for onset of stone formation is in the third decade and increases with age until 70 2. Epidemiological data have shown that calcium oxalate is the predominant mineral in a majority of cases 3. The traditional medicine system of India is a rich source

of valuable medicinal plants but there is no sufficient scientific data reported to establish the activity of these plants. Various medicinal plants have been employed to manage urolithiasis since ancient periods before inventing modern treatments. Scientific studies are mostly focused on phyto-therapy as it is proved to be vital in preventing recurrences of stone formation 4.

The purpose of this present review evaluates the data from in vitro and in vivo studies of medicinal plants and clinical trials of siddha formulatory medicines revealed that the potential usefulness of herbal medicines in the management of urolithiasis.

#### **CURRENTLY USED HERBAL MEDICINES: IN VITRO STUDIES:**

| S.NO | MEDICINAL PLANTS           | METHOD                       | MECHANISM OF ACTION                          |
|------|----------------------------|------------------------------|----------------------------------------------|
| 1.   | Phyllanthus niruri         | Titration method             | Interfere with early stages of stone for-    |
|      |                            |                              | mation <sup>5</sup>                          |
| 2.   | Peltophorum pterocarpum    | Titration method             | More effective in dissolving calcium oxa-    |
|      |                            |                              | late <sup>6</sup>                            |
| 3.   | Dolichos biflorus          | Titration method             | Antilithiatic and anticalcification activity |
|      | Bergenia ligulata          |                              | 7,8                                          |
| 4.   | Pavonia lasiopetala        | Nucleation assay             | Inhibiting crystallization <sup>9</sup>      |
| 5.   | Daucus carota              | Nucleation, growth & aggre-  | Anticrystallization, reduction in crystal    |
|      |                            | gation assay                 | size, inhibitory effect on coax crystal ag-  |
|      |                            |                              | gregation <sup>10</sup>                      |
| 6.   | Gossypium herbaceum        | Titration method             | More effective in dissolution of coax 11     |
| 7.   | Herniaria hirsute          | Nucleation and aggregation   | Inhibiting aggregation 12                    |
|      |                            | assay                        |                                              |
| 8.   | Chloris barbata            | Titration method             | Dissolving calcium oxalate <sup>13</sup>     |
| 9.   | Holarrhena antidysenterica | Nucleation and aggregation   | Decrease the size of crystals, inhibition of |
|      |                            | assay, cell culture          | coax aggregation 14                          |
| 10.  | Terminalia arjuna          | Scavenging, crystallization, | Scavenge the free radicals, inhibits crystal |
|      |                            | crystal growth, crystal mor- | aggregation <sup>15</sup>                    |
|      |                            | phology assay,               |                                              |

#### ANIMALS IN VIVO STUDIES:

| S.NO | MEDICINAL PLANTS        | PART USED           | MECHANISM OF ACTION                                            |
|------|-------------------------|---------------------|----------------------------------------------------------------|
| 1.   | Combination of Tribulus | Fruit, root, leaves | Antiurolithiatic <sup>16</sup>                                 |
|      | terrestris,             |                     |                                                                |
|      | Boerhavia diffusa,      |                     |                                                                |
|      |                         |                     |                                                                |
| 2.   | Aerva lanata            | Flowers             | Antiurolithiatic <sup>17</sup>                                 |
|      |                         | Whole plant         | Antiurolithiatic & diuretic 18                                 |
| 3.   | Craetava nurvala        | Bark decoction      | Preventing the deposition of calcium and oxalate <sup>19</sup> |

| S.NO | MEDICINAL PLANTS        | PART USED   | MECHANISM OF ACTION                                                                                            |
|------|-------------------------|-------------|----------------------------------------------------------------------------------------------------------------|
| 4.   | Ammi visnaga            | Seeds       | Antilithiatic and diuretic <sup>20</sup>                                                                       |
| 5.   | Phyllanthus niruri      |             | Inhibitory effect on crystal growth 21                                                                         |
| 6.   | Phoenix dactyleferae    | Seeds       | Antiurolithiatic <sup>22</sup>                                                                                 |
| 7.   | Melia azedarach         | Leaves      | Reduced urinary calcium, oxalate, phosphate <sup>23</sup>                                                      |
| 8.   | Moringa oleifera        | Root        | Reduced urinary oxalate, regulatory action on en-<br>dogenous oxalate synthesis in hyperoxaluria <sup>24</sup> |
| 9.   | Plectranthus amboinicus | Leaves      | Effect against renal calculi 25                                                                                |
| 10.  | Peperomia tetraphylla   | Whole plant | Preventive and curative properties in urolithiasis <sup>26</sup>                                               |
| 11.  | Benincasa hispida       | Seeds       | Antiurolithiatic 2/                                                                                            |
| 12.  | Asparagus racemosus     | Plant       | Antiurolithiatic 28                                                                                            |
| 13.  | Pergularia daemia       | Whole plant | Diuretic, lowering of urinary concentrations of stone forming constituents <sup>29</sup>                       |
| 14.  | Ichnocarpus frutescens  | Root        | Reducing the risk of CaOx super saturation <sup>30</sup>                                                       |
| 15.  | Acorus calamus          | Rhizome     | Diuretic, strongly suppressing various urolithiatic promotors <sup>31</sup>                                    |
| 16.  | Ipomoea eriocarpa       | Leaves      | Inhibits the growth of urinary stones <sup>32</sup>                                                            |
| 17.  | Aerva javanica          | Plant       | Preventing growth of urinary stones, supporting folk information <sup>33</sup>                                 |
| 18.  | Biophytum sensitivum    | Whole plant | Diuretic, Antiurolithiatic <sup>34</sup>                                                                       |
| 19.  | Nothosaerva brachiate   | root        | Supporting folk formation 35                                                                                   |
| 20.  | Viburnum opulus         | Fruits      | Inhibition of oxalate, free radical production & Diuretic <sup>36</sup>                                        |

### PRECLINICAL AND CLINICAL STUDIES USED IN THE TREATMENT OF UROLITHIASIS IN SIDDHA:

| S.NO | SIDDHA MEDICINES              | STUDY MODEL              | MECHANISM OF ACTION                                                                                        |
|------|-------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------|
| 1.   | Megarajanga chooranam         | Animals in vivo          | Lithotriptic <sup>37</sup>                                                                                 |
| 2.   | Vediuppu chunnam              | Animals in vivo          | Antilithiatic <sup>38</sup>                                                                                |
| 3.   | Nerunjil kudineer             | Animals in vivo          | Diuretic and Lithotriptic <sup>39</sup>                                                                    |
| 4.   | Nandukkal parpam              | Animals in vivo          | Diuretic and Lithotriptic 40,41,42                                                                         |
| 5.   | Venkara parpam                | Animals &humans in vivo  | Diuretic and Lithotriptic <sup>39</sup>                                                                    |
| 6.   | Kalladaippu thool             | Animals & humans in vivo | Diuretic and Lithotriptic <sup>39</sup>                                                                    |
| 7.   | Karpoora silasathu parpam     | Animals & humans in vivo | Diuretic and Lithotriptic 43                                                                               |
| 8.   | Seenakaara parpam             | Animals in vivo          | Antiurolithiatic 44                                                                                        |
| 9.   | Sirupeelai samoola kudineer   | Animals in vivo          | Antiurolithiatic <sup>45</sup>                                                                             |
| 10.  | Tripala karpa chooranam       | Animals in vivo          | CaOx crystal inhibitory, Diuretic, Epithelial cell protective, Hypocalciuric and Hypercitrauric effects 46 |
| 11.  | Kalladaipu chooranam          | Animals & humans in vivo | Lithotriptic 47,48                                                                                         |
| 12.  | Neerkattu parikaara chooranam | Animals & humans in vivo | Lithotriptic, Antispasmodic & Diuretic 49                                                                  |

| S.NO | SIDDHA MEDICINES                                                                                           | STUDY MODEL              | MECHANISM OF ACTION                                             |
|------|------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------|
| 13.  | Aruvagai chooranam                                                                                         | Animals & humans in vivo | Antiurolithiatic 50                                             |
| 14.  | Combined medicines of<br>Kukil parpam<br>Neermulli kudineer<br>Kalkaraichi maathirai<br>Amirthathi kuligai | Human in vivo            | Diuretic and Lithotriptic 51                                    |
| 15.  | Combined medicines of Keezhanelli chooranam Silasathu parpam Nerunjil kudineer                             | Humans in vivo           | Inhibitory effect on crystal growth, Diuretic & Lithotriptic 52 |
| 16.  | Kara soda sathu parpam                                                                                     | Animals in vivo          | Antiurolithiatic 53                                             |
| 17.  | Combined medicines of<br>Sindhuvallathy mezhugu<br>Kalladaippu kudineer                                    | Animals & humans in vivo | Antiurolithiatic 54                                             |

#### **CONCLUSION**

The effects of various medicinal plants with proposed to prevent and treat to urolithiasis. The reviewed studies data from the in vitro, in vivo and clinical studies of Siddha medicines emphasized the potential effect of antiurolithiatic activity. People who were lack in awareness of traditional medicines believed herbal medicines can cause kidney diseases. This current review work is needed to overcome the above statement through sufficient research works done in Siddha system of medicine.

#### **SOURCE OF FUNDING**

Nil

## **CONFLICT OF INTEREST**

There are no conflict of interest.

#### REFERENCES

- 1. N. Saxena, A. Argal, study of antiurolithiatic activity of a formulated herbal suspension; herba pol 2015; 61(2): 41-49.
- Khaling mikawlrawng, suresh kumar, vandhana., Current scenario of urolithiasis and the use of medicinal plants as antiurolithiatic agents in Manipur (north east India): a review; IJHM 2014; 2 (1): 1-12.
- Butterweck and Khan, Herbal medicines in the management of urolithiasis: alternative or complementary?; Planta med. Author manuscript 2009 august; 75(10): 1095-1103.

- 4. Thenmozhi et al., Overview on selected medicinal plants used in the management of urolithiasis; WJPPS 2016; 5 (10); 280-294.
- 5. Barros ME et al., Effect of an aqueous extract from *P.niruri* on calcium oxalate crystallization *in vitro*.
- 6. Rahul jha et al., Phytochemical analysis and *in vitro* urolithiatic activity of *Peltophorum ptero-carpum* leaves (DC) Baker; JPMS 2016; 4(3): 18-22.
- Garimella P J et al., *In vitro* studies on antilithiatic activity of seeds of *Dolichos biflorus* linn. And rhizomes of *Berginia ligulata* wall. Phytotherapy research. 2001; 15: 315-355.
- 8. Unnati atodaiya et al., Antiurolithiatic activity of *Dolichos biflorus* seeds; Journal of pharmacognosy and phytochemistry, 2 (2), 2013, 209-213.
- 9. Ram Prasad R et al., *in vitro* antiurolithiatic activity of aqueous extract of *Pavonia lasiopetala*, JDDT, 2019; 9(2): 102-104.
- 10. Sweta bawari et al., Antiurolithiatic activity of *Daucus carota*: an *in vitro* study, pharmacogn J. 2018; 10(5): 880-884.
- 11. Niharika M et al., Evaluation of in vitro antiurolithiatic activity of *Gossypium herbaceum*, J. Pharm. Sci. & res. 10(50, 2018, 1236-1237.
- 12. Atmani fouad et al., Effect of an extract from *Herniaria hirsute* on calcium oxalate crystallization in vitro, BJU international, May 2000; 85(6):621-625.
- 13. Nikarika M et al., Evaluation of *in vitro* antiurolithiatic activity of *Chloris barbata*, Int J Curr Pharm Res, 2018; 10(3); 65-67.
- 14. Aslam khan et al., Studies on the *in vitro* and *in vivo* antiurolithic activity of *Holarrhena antidysenterica*, Urol res. Authors manuscript. 2012, dec 40(6): 671-681.

- 15. Mittal A et al., *In vitro* studies reveal antiurolithic effect of *Terminalia arjuna* using quantitative morphological information from computerized microscopy, Int. braz j urol. 41(5), Sep/ Oct 2015;
- 16. N. Saxena, A. Argal, study of antiurolithiatic activity of a formulated herbal suspension; herba pol 2015; 61(2): 41- 49.
- 17. Padma charan behera et al., Anti-urolithiatic activity of hydrogenated naphthol isolated from *Aerva lanata* (L.) Juss. Flower extract; Indian tradit knowle, vol. 15(3), July 2016, 453-459.
- Basavaraj M et al., Antiurolithiatic activity of natural constituents isolated from *Aerva lanata*; J Ayurveda and Integr med. 2017 Oct – Dec; 8(4): 226-232.
- Varalakshmi P et al., Effect of *Crataeva nuruala* in experimental urolithiasis. J. ethnopharmacol. 1990; 28: 313-321.
- 20. Khan ZA et al., Inhibition of oxalate nephrolithiasis with *Ammi visnaga* (ai- khillah). Int. urol. nephrol. 2001; 33: 605-608.
- Freitas A M et al., the effect of p.niruri on urinary inhibitors of calcium oxalate crystallization and other factors associated with renal stone formation.
   j. urol. international. 2002; 89: 829 (2002).
- 22. Abdullah H et al., Evaluation of antiurolithiatic activity of *Phoenix dactyleferae* seeds extract in ethylene glycol induced urolithiasis in rats; IJPPR, human journals; May 2017, 9(2); 6-20.
- 23. Christina A J et al., Antilithiatic effect of *Melia azedarach* on ethylene glycol induced nephrolithiasis in rats. Pharmaceutical biology. 2006; 44: 480-485.
- 24. Karadi R V et al., Effect of *Moringa oleifera* lam. Root wood on the ethylene glycol induced urolithiasis in rats. J. ethnopharmacol. 2006; 105: 306-311.
- 25. Alvin jose M et al., Modulatory effect of *Plectranthus amboinicus* on ethylene glycol induced neprolithiasis in rats. Indian. J. Pharmacol. 2005; 37: 43-45.
- Nishanthi M et al., Antiurolithiatic activity of the plant extracts of *Peperomia tetraphylla* on ethylene glycol induced urolithiasis in rats; Rasayan J. Chem, Apr - June 2016; 9 (2); 294-299.

- 27. Patel RK et al., Antiurolithiatic activity of ethnolic extract of seeds of *Benincasa hispida*; pharmacologyonline 3: 586-591 (2011).
- 28. Narumlla jagannath et al., Study of antiurolithiatic activity of *Asparagus racemosus* on albino rats, indian j pharmacol.2012 Sep Oct; 44(5): 576-579.
- 29. Vyas BA et al., Antiurolithiatic activity of whole plant hydroalcoholic extract of *Pergularia daemia* in rats, J young pharm. 2011; 3(1): 36-40.
- 30. J anbu et al., Antiurolithiatic activity of ethyl acetate root extract of *Ichnocarpus frutescens* using ethylene glycol induced method in rats. J. pharm. sci. & res. 3 (4), 2011, 1182-1189.
- Hardik ghelani et al., Diuretic & Antiurolithiatic activities of an ethonolic extract of *Acorus calamus* L. rhizome in experimental animal models, J Tradit complement med. 2016 Oct; 6 (40: 431-436.
- 32. Moonjit das et al., Antiurolithiatic activity of ethanol leaf extract of *Ipomoea eriocarpa* against ethylene glycol induced urolithiasis in male wister rats, Indian j pharm 2016, 48(30: 270-274.
- 33. Ragini V et al., Antiurolithiatic activity of extracts of *Aerva javanica* in rats, Int. J. Drug Dev.& Res. Oct-dec 2014, 6(4): 35-45.
- 34. Anil tukaram pawar et al., Antiurolithiatic activity of standardized extract of *Biophytum sensitivum* against zinc disc implantation induced urolithiasis in rats, J Adv Pharm Technol Res. 2015 Oct - Dec; 6(4): 176-182.
- 35. Priyanka kantivan goswami wt al., Protective effect of root of *Nothosaerva brachiata* weight in ethylene glycol induced urolithiatic rats, Int. Res J. Pharm, 2015, 6 (12); 808-812.
- Mert ilhan et al., Preclinical evaluation of Antiurolithiatic activity of *Viburnum opulus* L. on sodium oxalate induced urolithiasis rat model, Evidence based complementary and alternative medicine, 2014; 1-10.
- 37. Sathyavathy et al., Lithotriptic activity of siddha drug *Megarajanga chooranam* on ethylene glycol induced urolithiasis in rats; IJPRR may 2013; 2(5): 24-32.
- 38. Selvam R et al., Effect of *Aerva lanata* leaf extract and *Vediuppu chunnam* on the urinary risk factors of calcium oxalate urolithiasis during experimental hyperoxaluria. Pharmacol. Res. 2001; 43: 89-93.
- 39. Nalini sofia H et al., Antiurolithiatic herbs and effective siddha formulations; WJPR, 2015, 4(4); 892-911.

- 40. N Arunai nambiraj et al., Prophylactic effect of Nandukkal parpam (a Siddha formulation drug) on ethylene glycol induced calcium oxalate microlithiasis in the kidneys of wister rats; Original/ research articles, 2002.
- 41. Nalini sofia. H et al., A pilot study evaluating therapeutic efficacy of Siddha formulation 'Nandukkal parpam' in the management of renal calculi; Current traditional medicine, 1(2); 2015.
- 42. Arul jothi R et al., Review of *Nandukkal parpam* for diuretic in traditional Siddha medicine; Int. J. Adv. Multidiscip. Res. (2019). 6(6): 14-16.
- Nalini sofia H et al., Efficacy of Karpoora silasathu parpam in the management of AzhalKalladaippu (renal calculi), Int. J. Adv. Res. Feb 2019. 7(2). 231-241.
- 44. Mariappan A et al., Antiurolithiatic evaluation of Siddha formulation *Seenakaara parpam* against zinc disc implantation induced urolithiasis in wister albino rats; Int. J. Adv. Res. Biol. Sci. 2016, 3(12): 7 13.
- 45. A Hannah Rachel vasanthi et al., Antiurolithiatic effect of *Sirupeelai samoola kudineer*: a polyherbal Siddha decoction on ethylene glycol induced renal calculus in experimental rats; Pharmacognosy magazine, 2017: 13(50); 273-279.
- Tamil selvan A et al., Antiurolithiatic activity of *Tripala karpa chooranam*; J. Adv. Pharm. Edu & Res. Jul - Sep 2013, 3(3): 267-272.
- 47. Arul priya et al., Evaluation of anti urolithiatic potential of the Siddha formulation *Kalladaippu chooranam* in ethylene glycol induced urolithiasis in rats; Int. J. Curr. Res. Med. Sci. (2018). 4 (9): 33-40.
- 48. An open non randomized clinical trial of *Kalladaippu chooranam* in *Vatha kalladaippu* (urolithiasis), Dissertation, Reg no: 321511101, Oct-2018, The Tamilnadu Dr.M.G.R. Medical University, Chennai.
- 49. Vijayakumar P. *Neerkattu parikaara chooranam*, Dissertation subject; April 2013, The Tamilnadu Dr.M.G.R. Medical University, Chennai.
- Namasivayam. K. A study on *Kalladaippu noi*, Dissertation, April 2013, The Tamilnadu Dr. M.G.R. Medical University, Chennai.
- Shree devi MS et al., Urolithiasis (Kalladaippu) an evidence based case study, Int. J. Ayurvedic Med, 2017, 8(1), 35-37.

- 52. Nalini sofia H et al., Preliminary clinical study of Siddha formulaions in the treatment of *kalladaippu* (urolithiasis), Proceedings of the national seminar on SEHFS 2014; 395-400.
- 53. Sudha revathy S et al., Antiurolithiatic activity of Siddha herbomineral drug by zinc implantation method in experimental rats; World J Pharma Sci. 2016; 4(8): 233-244.
- 54. Standardization and clinical evaluation of siddha formulations for urolithiasis / *kalladaippu*, national library of medicine, Oct 2013.